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Abstract. We study the one-dimensional electron gas with parabolic dispersion and a repulsive
delta-function interaction potential. Using the ladder theory we obtain analytical results for
the ground-state energy and the compressibility which are in agreement with exact results for
weak and strong coupling. We calculate the short- and the long-distance behaviour of the
pair-correlation functiong(z) and derive critical exponents fromg(z → ∞). We evaluate the
connection between the local-field correction and critical exponents.

1. Introduction

The mean-field theory is the basic theory to treat interaction effects [1]. The understanding
of many-body effects going beyond the mean-field theory is one of the major topics in
solid-state physics [2]. For the three-dimensional electron gas the concept of the so-called
local-field correction was found to describe electronic properties of simple metals where
many-body effects are already very important due to the large Wigner–Seitz radius [3].
The theory of Singwi, Tosi, Land, and Sjölander (STLS) [4] is a self-consistent theory for
the local-field correction which is directed to understand theshort-distance behaviourof
the pair-correlation function which determines the ground-state energy. Within the STLS
approach the local-field correction is independent of frequency. Recent theoretical [5] and
experimental work [6] is directed towards understanding the frequency dependence of the
local-field correction for the three-dimensional electron gas with Coulomb interaction.

In recent years [7] many-body effects have been studied for models where exact
results can be obtained (for instance the one-dimensional Hubbard model). Pertubative
renormalization-group theory [8], bosonization techniques [9], and the conformal field theory
[10] were used and to get insight into thelong-distance behaviourof correlation functions.

In this paper we study the pair-correlation functiong(z → 0), which determines the
ground-state energy, andg(z → ∞), which determines critical exponents, for a one-
dimensional electron gas with a short-range interaction and we derive analytical results.
The exact ground-state energy of this model has been calculated before [11, 12]. We show
how to relate the ‘older’ many-body theory (using the concept of the local-field correction)
with more ‘recent’ work in this field (using the renormalization group and bosonization
techniques). As theory we apply the ladder theory [13].

† The ‘Laboratoire de Physique des Solides’ is a ‘Laboratoire associé au Centre National de la Recherche
Scientifique (CNRS)’.
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The paper is organized as follows. In section 2 we describe the model and the theory.
The analytical results for the ground-state energy and the compressibility are given in
section 3. In section 4 we discuss the local-field correction. The pair-correlation function
and the critical exponents are calculated in section 5. A short discussion of our results is
in section 6. We conclude in section 7.

2. Model and theory

We study a one-dimensional electron model with kinetic energy, characterized by an
effective massm (with parabolic dispersionε(q) = q2/2m), and interaction energy
characterized by the potentialV0 (and the interaction potential between two particles at
r1 and r2 is given by V (r1, r2) = V0δ(r1 − r2)). In the Fourier space the interaction
potential is independent of the wavenumberq and expressed asV (q) = V0. The electron
densityn, the electron mass, andV0 define the relevant dimensionless parameterγ for the
strength of the interaction asγ ≡ mV0/n = πV0/2vF . vF = kF /m is the Fermi velocity.
The parameterCp = 2γ /π was introduced earlier [12, 13]. The electron density defines the
Fermi wavenumberkF via n = 2kF /π . ρF = n/2εF is the density of states at the Fermi
energyεF . We express all results as functions ofγ and we useh = 2π .

The ladder theory was originally formulated for the long-range Coulomb potential
[14, 15]. By summing up an infinite series of particle–particle ladder interactions, the pair-
correlation function, which is positive for all coupling strength, has been obtained. In the
ladder theory the effective interactionI (p,p′, q) between two electrons with wavenumber
p andp′ is given by the solution of the integral equation [14]

I (p,p′, q) = V (q)+
∑
k

V (q − k)[1− n(q + k)][1 − n(p′ − k)]
ε(p)− ε(p+ k)+ ε(p′)− ε(p′ − k) I (p,p′,k) (1)

where V (q) is the Fourier transform of the interaction potential andn(p) is the zero
temperature Fermi distribution function. We are interested in the short-range behaviour
of the system: in the following we apply the approximationI (p,p′, q) = I (0, 0, q) as used
for the long-range Coulomb potential [14, 15]. In fact, the comparison of our approximation
with the exact ladder theory [13] allows us to get some insight into this approximation which
is always made for long-range potentials. For the short-range interaction potential we find
that I (0, 0, q) is independent of the wavenumber:I ≡ I (0, 0, q). By defining0 ≡ mI/n
we get

0 = γ

1+ 2γ /π2
(2)

where0 decreases as0 = γ for γ → 0 and saturates at0 = π2/2 for γ → ∞. With
I (p,p′, q) the pair-correlation functiong(z) can be calculated. Within the approximation
I (p,p′, q) = I (0, 0, q) the pair-correlation function is given by [14]

g(0) = 2

n2

∑
pp′
n(p)n(p′)

[
1− 1

2

∑
|q|>kF

I (0, 0, q)/ε(q)
]2

(3a)

whereg(z) is defined byg(z) = [g↑↑(z)+ g↑↓(z)]/2 and can be expressed in terms of the
static structure factor, see equation (11). Withg↑↑(z = 0) = 0 (Pauli principle) this means
thatg(0) is determined by the static structure factor for antiparallel spin configurations. For
details of the ladder theory we refer to [14].

We obtain with equation (2) and equation (3a) the analytical result

g(0) = 1/[2(1+ 2γ /π2)2] (3b)
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Figure 1. The pair-correlation functiong(z = 0) versus interaction strengthγ
(or Cp) according to equation (3b) is shown by the broken curve. The dotted
curve represents numerical results within the exact ladder theory [13].

with g(0) = (1− 4γ /π2)/2 for γ → 0 andg(0) = π4(1− π2/γ )/8γ 2 for γ →∞. The
comparison ofg(0) obtained within the ‘approximative’ ladder theory in equation (3b) with
the ‘exact’ ladder theory [13] shows that our values ofg(0) are slightly smaller, see figure 1.

3. Ground-state energy and compressibility

The interaction energyεint(γ ) is given in terms of the static structure factor [2]. The static
structure factor is related to the pair-distribution functiong(z) and one findsεint(γ ) =
n2γg(0)/2m [13]. The contribution of the interaction energyεint to the ground-state energy
εg per particle is expressed as

εint =
∫ γ

0
dλ
εint(λ)

λ
. (4)

The contribution of the kinetic energyεkin to the ground-state energy per particle is given
by εkin = n2π2/24m. The ground-state energy is written as

εg = n2

2m

[
π2

12
+
∫ γ

0
dλ g(0)

]
(5)

and the total energy isEg = nεg. Within the ‘approximative’ ladder theory the total energy
is given by the analytical expression

Eg

εF kF
= 2

3π
+ 4

π3

γ

(1+ 2γ /π2)
. (6)

With (6) we derive for weak couplingEg/εF kF = 2(1+ 6γ /π2 − 12γ 2/π4)/3π and for
strong couplingEg/εF kF = 8(1− 3π2/8γ )/3π . We note that the Hartree–Fock (HF) and
exchange (ex) energy is written asεHF = γ n2/4m = −εex and the correlation (cor) energy
is given byεcor = −γ 2n2/[2m(π2+ 2γ )] with εcor/εex = 1 for γ →∞.

The weak-coupling result was calculated within the mean-field approximation [12, 13].
The exact strong-coupling result forγ → ∞ corresponds to non-interacting spinless
fermions with Eg(γ → ∞) = 4Eg(γ = 0) = 8εF kF /3π with kF replaced by 2kF
[12, 15]. The same ground-state energy was found in the strong-coupling limit of a Bose
condensate in one dimension [16]. We conclude that the approximative ladder approach
describes correctly the weak-and strong-coupling behaviour. For intermediate coupling
our ground-state energy is about 5% lower than the exact result, see figure 2. This is the
price we have to pay in order to getanalytical results. The exact ladder theory [13] gives
Eg/εF kF = 9.71/3π for γ →∞.

The compressibilityκ can be expressed by the second derivative of the ground-state
energy as∂2Eg/∂n

2 = πvF κ0/2κ with κ0 = 4m/π2n3 as the compressibility of the free
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Figure 2. The total energyεtot (normalized toεF kF )
versus interaction strengthγ (or Cp) according to
equation (6) is shown by the broken curve. The full
curve represents the exact result [12]. The dotted curve
represents numerical results within the exact ladder
theory [13].

Figure 3. The inverse compressibility 1/κ (in units
of the inverse compressibility of the free electron gas
1/κ0) according to equation (7). The broken and chain
curves correspond to the asymptotic results.

electron gas [1]. With equation (6) we find

κ0

κ
= 1+ 2γ

π2

1+ 6γ /π2+ 12γ 2/π4

(1+ 2γ /π2)3
. (7)

The asymptotic results are written asκ0/κ = 1 + 2γ /π2 − 16γ 4/π8 for γ → 0 and
κ0/κ = 4(1− 3π2/4γ ) for γ →∞, see figure 3. Note the large validity range of the weak
coupling result in figure 3:γ 6 3.

With the ground-state energy we can calculate the chemical potentialµ as µ/εF =
1 + 4γ (1 + 3γ /π2)/[π2(1 + 2γ /π2)2], the kinetic energyt per particle ast/εF =
(1 + 4γ /π2 + 16γ 2/π4)/[3(1 + 2γ /π2)2] and the potential energyv per particle as
v/εF = 2γ /[π2(1+ 2γ /π2)2]. Note thatv = 0 andt = εF /3 for γ = 0. For 1/γ = 0 one
findsv = 0 andt = 4εF /3. We conclude that for 1/γ = 0 interaction effects disappear and
the particles behave as free particles [12, 15].

4. Local-field correction

We define the local-field correctionG(q, ω) by the dynamic density response function
X(q, ω) as [2]

X(q, ω) = X0(q, ω)

1+ V0[1−G(q, ω)]X0(q, ω)
. (8)

X0(q, ω) is the Lindhard function of the free-electron gas. Note that the local-field
correction depends onq andω. By using the compressibility sum-ruleX(q → 0, ω =
0) ≡X(q → 0) = n2κ one finds [13]

G(0, 0) = 1− π2(κ0/κ − 1)/4γ. (9a)

With the analytical expression forκ0/κ in equation (7) we derive

G(0, 0) = 1+ 6γ /π2+ 12γ 2/π4+ 16γ 3/π6

2(1+ 2γ /π2)3
(9b)
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with G(0, 0) = (1+ 8γ 3/π6)/2 for γ → 0 andG(0, 0) = 1− 3π2/4γ + 3π4/16γ 2 for
γ → ∞. From the high-frequency expansion ofX(q, ω) and by calculatingω-moments
[4] of X(q, ω) one gets [13]

G(q,∞) = 1− g(0). (10a)

With equation (3b) we conclude that

G(q,∞) = 1+ 8γ /π2+ 8γ 2/π4

2(1+ 2γ /π2)2
(10b)

with G(q,∞) = (1+4γ /π2−16γ 4/π8)/2 for γ → 0 andG(q,∞) = 1−π4/8γ 2+π6/8γ 3

for γ →∞.
The collective modes are given as the poles ofX(q, ω). With X0(q, ω → ∞) ∝

−q2/ω2 andG(0, 0), in order to get the long wavelength limit of the collective density
(d) modes, we find [17–19]ωd(q)/vF |q| = [ρF /X(q → 0)]1/2 = [κ0/κ]1/2 with
ωd(q)/vF |q| = 1+ γ /π2 − γ 2/2π4 for γ → 0 andωd(q)/vF |q| = 2(1− 3π2/8γ ) for
γ →∞. For the velocity of soundvd , usingωd(q → 0) = vd |q|, we findvd = vF [κ0/κ]1/2

[1].

5. Pair-correlation function and critical exponents

The pair-correlation functiong(z) is given by the static structure factor [2] and is expressed
as

g(z) = 1− 1

πn

∫ ∞
0

dq cos(qz)[1− S(q)] (11)

and S(q) is the frequency integral over the dynamical structure factorS(q, ω). One can
show thatg(z→ 0) = g(0)+ g′(0)|z| with g′(0) = A/2n [13] andA is given by

A = lim
q→∞{q

2[1− S(q)]}. (12)

For small distances, following Kimball [20], the effective two-electron wavefunctionϕ(z)

is given by ϕ(z → 0) = exp(γ kF |z|/π) and one can establish a relation between
g(0) = |ϕ(z → 0)|2 and g′(0) = ∂|ϕ(z → 0)|2/∂z : g′(0) = mV0g(0). We derive the
Kimball relation

g(0) = 1

2n2γ
lim
q→∞{q

2[1− S(q)]} (13)

and it follows the exact result

g(z→ 0) = g(0)[1+ γ n|z| +O(z2)]. (14)

In [21] we discussed the STLS approach for a long-range Coulomb potential with the static
structure factor given by a generalized Feynman–Bijl (GFB) form. In the ladder theory the
local-field correction depends onq and ω and the static structure factor in the GFB form
must be generalized. We propose

SGFB(q) = 1

[1/S0(q)2+ 4n2γ [1−G(q, ω1)]/q2]1/2
(15)

whereS0(q) is the static structure factor of the free-electron gas (particle–hole excitations).
The term containingγ represents the collective modes andω1 is a characteristic frequency.
With S0(q > 2kF ) = 1 we conclude thatSGFB(q → ∞) = 1− 2n2γ [1 − G(q, ω1)]/q2

fulfils the Kimball relation in equation (13) if 1− G(q, ω1) = g(0). For g(z → 0) we
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conclude thatG(q, ω1) in equation (15) must be replaced byG(q,∞), see equation (10a).
For g(z → ∞) we suggest thatG(q, ω1) in equation (15) should be replaced byG(0, 0):
this is in agreement with the bosonization approach [9] where the long wavelengthand
low-energy behaviour is used to characterize the system. With equation (11) we find for
g(z→∞) the analytical result

g(z→∞) = 1− Kd

(znπ)2
[1−K2

d cos(2kF z)+O(1/z2)] (16a)

with

Kd = 1

[1+ 4γ [1−G(0, 0)]/π2]1/2
(16b)

whereKd determines thelong-distancedecay of the pair-correlation function. With the
compressibility sum rule in equation (9a) Kd(γ ) is written as

Kd = [κ/κ0]1/2. (17)

In the weak-coupling limit we findKd = 1/(1+ 2γ /π2− 16γ 4/π8)1/2 ≈ 1−V0/2πvF
and for strong couplingKd = 1/(2 − 3π2/8γ ). For the Hubbard model, characterized
by U and t , one getsKd(U/t → 0) = 1 − U/πvF and Kd(U/t → ∞) = 1/2
with vF = 2t sin(πñ/2) and ñ is the band-filling factor [17, 18]. The definition of the
compressibility implies∂2Eg/∂n

2 = πvF κ0/2κ [1]. With ∂2Eg/∂n
2 = πvd/2Kd [18] we

conclude thatKd = (κ/κ0)
1/2. This result agrees with our equation (17) which was obtained

from g(z→∞).
Kd describes the singularity in the momentum distribution function byn(k) =

0.5−constsign(k−kF )|k−kF |α with α = [K1/2
d +1/K1/2

d −2]/4 [18, 22] and the density of
statesρ(ε) near the Fermi energy is expressed asρ(ε) ≈ |ε−εF |α [22]. With equation (17)
we obtain

α = [(κ/κ0)
1/2+ (κ0/κ)

1/2− 2]/4. (18)

In figure 4 we showα versusγ . We conclude that 06 α 6 1/8 in agreement with results
found for the Hubbard model [18, 22, 23].

We find in the weak-coupling limit

α = γ 2(1− 2γ /π2)/4π4. (19a)

In the strong-coupling limit we get

α = (1− 9π2/8γ )/8. (19b)

Figure 4. The critical exponentα versus interaction strength
γ according to equation (18). The broken and chain curves
correspond to the asymptotic results, see equation (19).
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We note the large validity range of the weak-coupling result:γ < 3, see figure 4. Within the
STLS approach [24] we found for weak couplingαSTLS= γ 2/4π4† and for strong coupling
αSTLS= 0.025. In order to calculate the numerical factor 1/4π4 of α for weak coupling it
is essential to know that noγ 2-term exists inκ0/κ = 1+ 2γ /π2 − 16γ 4/π8 for γ → 0,
see equation (7). Therefore, we believe that equation (19a) is a very important result of
the present paper. We are not aware that an analytical result ofα for weak coupling has
already been published.

6. Discussion

It is a very surprising result of the present paper that, for the one-dimensional electron gas,
analytical results for the ground-state energy can be obtained which are correct in the weak-
coupling and strong-coupling limit. With the ground-state energy all related properties can
be calculated. The novel result of the present paper is the fact that analytical results have
been obtained.

In [13] the ladder theory was applied to calculate the ground-state energy directly
and the two functionsA(p,p′) and h(x, y) were introduced. Without going into details
we mention that our approximation corresponds toA(p,p′) = A(0, 0) = −ρF /2 and
h(x, y) = h(0, 0) = 1/π . It should also be mentioned that the ladder theory had been
applied before to the Hubbard model [25]. For a review, see [26].

From our theoretical results obtained in this paper we suggest that conventional many-
body theory, developed for the three-dimensional electron gas with long-range Coulomb
interaction [14] works quite well to describe the one-dimensional electron gas [13]. The
concept of the local-field correction is an important concept even for the one-dimensional
electron gas. This is of interest because many-body effects in the three-dimensional electron
gas, where exact results are not available, are described by the local-field correction. We
mention that many-body effects in the one-dimensional electron gas with a long-range
Coulomb interaction have recently been discussed using the local-field correction [27].

Concerning experiments it should be noted that our theory contains collective modes
and (one-particle) electron-hole excitations, see equation (8). Some recent experiments
made with quantum wires [28–30] have shown that one-particle excitations exist. This is
in agreement with our theory. In the bosonization approach [8, 9] such excitations do not
exist.

7. Conclusion

We presented analytical results for the ground-state energy and the compressibility of a one-
dimensional electron gas with short-range interaction as a function of the coupling parameter
γ . Our calculation ofg(z → ∞) shows that the critical exponentKd is described by the
local-field correctionG(0, 0). For g(z → 0) we found thatG(q,∞) enters the Kimball
relation. These results connect the ‘older’ many-body theory using the local-field correction
with the ‘recent developments’ of the many-body theory using bosonization techniques and
the renormalization group. Numerical and analytical results for the parameterα as a function
of γ have been given.

† The weak coupling result in [24] should readα = γ 2/4π4.
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